

INHIBITION BY LEAD OF PHENYLETHANOLAMINE-*N*-METHYLTRANSFERASE

MARY LOU CASPERS

Department of Chemistry, The University of Detroit, Detroit, MI 48221, U.S.A.

(Received 1 June 1981; accepted 26 October 1981)

Abstract—Phenylethanolamine-*N*-methyltransferase (PNMT) catalyzes the conversion of norepinephrine to epinephrine. The enzyme, obtained from bovine adrenal gland, was incubated with PbCl_2 at 23° for various times prior to assay at 37°. Inhibition developed slowly and reached a maximum after 45 min. In the presence of 4.5 nmoles PbCl_2 (15 μM), 5.8 μg protein was inhibited 50%, and inhibition was complete at 18 nmoles PbCl_2 (60 μM). At maximum inhibition the PbCl_2 : protein ratio was 3.1 nmoles PbCl_2 / μg protein. In the presence of PbCl_2 , the graph of enzyme activity versus protein concentration intersected the abscissa to the right of the origin, indicating that lead is an irreversible or very slowly reversible inhibitor. The activity of PNMT which had been exposed to PbCl_2 (2.6 or 5.2 nmoles PbCl_2 / μg protein) was not restored by the addition of EDTA, DL-penicillamine or 1,3-dithiothreitol even when the concentration of the chelator was in 10 to 200-fold mole excess over PbCl_2 . DL-Penicillamine and 1,3-dithiothreitol were unable to prevent PbCl_2 inhibition of the enzyme when combined with PbCl_2 1 hr before addition of enzyme. EDTA could prevent 40% of PbCl_2 inhibition but a decrease in total enzyme activity was noted in the presence of this chelator. Dialysis of the PbCl_2 -inhibited enzyme against buffer alone or buffer plus DL-penicillamine did not result in restoration of PNMT activity.

The neurotoxic effects of lead poisoning are well documented and include encephalopathy characterized by seizures, coma and behavioural disorders [1, 2], as well as peripheral neuropathy with impaired motor function [3, 4]. The biochemical basis of these disorders is uncertain but *in vivo* studies indicate that the concentration of several neurotransmitters is altered in the brains of animals exposed to lead [5, 6]. One such neurotransmitter, norepinephrine, is increased in amount after lead exposure [7, 8].

One of the steps in norepinephrine metabolism involves methylation to epinephrine using the enzyme phenylethanolamine-*N*-methyltransferase (*S*-adenosyl-L-methionine:phenylethanolamine-methyltransferase, PNMT,* EC 2.1.1.28). This enzyme has been identified in many species [9, 10] including humans [11]. In mammals it is present in highest amount in the adrenal medulla [9, 12] although lesser amounts have been found in several other tissues including brain [13, 14]. Many regions of the brain exhibit PNMT activity including the hypothalamus, cerebral cortex and cerebellum [15-17]. PNMT is believed to possess an essential sulfhydryl group because inhibition of enzyme activity occurs *in vitro* in the presence of *p*-chloromercuribenzoate, [9], *N*-ethylmaleimide and mercury [11].

To date, no reports have appeared regarding the effects of lead on PNMT, and it is the subject of the present study. Kinetic data indicate that lead irreversibly inhibits this enzyme.†

* Abbreviations: PNMT, phenylethanolamine-*N*-methyltransferase; PPO, 2,5-diphenyloxazole; POPC, 1,4-bis-[2-(5-phenyloxazolyl)]benzene; and Cellosolve, ethylenglycol monoethyl ether.

† Part of this work was presented to the American Society of Biological Chemists, June 2-5, 1980, New Orleans, LA, U.S.A.; *Fedn Proc.* **39**, 2215 (1980).

MATERIALS AND METHODS

Materials. Disodium EDTA was obtained from the Fisher Scientific Co., Detroit, MI. The Amer sham Corp., Arlington Heights, IL, was the source of $^{210}\text{Pb}(\text{NO}_3)_2$ and *S*-adenosyl-L-[methyl- ^3H]methionine (15 Ci/mmole). DL-Normetanephrine HCl, PNMT (obtained partially purified from bovine adrenal medulla), and *S*-adenosyl-L-methionine were obtained from the Sigma Chemical Co., St. Louis, MO. Prior to use, *S*-adenosyl-L-methionine was purified one a Biorad AG1-X8 (200-400 mesh, HCO_3^- form) column as described by Shapiro and Ehninger [18] to remove *S*-adenosylhomocysteine, a potent inhibitor of PNMT [19]. All other reagents were of analytical grade when available.

Assay methods. PNMT was assayed according to the method of Axelrod [9] with minor modifications. In addition to enzyme, the final assay mixture contained 0.3 μmole DL-normetanephrine HCl, 10 μmoles phosphate (pH 7.9), and 12.5 nmoles *S*-adenosyl-L-methionine in a total volume of 300 μl . Similar results were obtained if 6-10 μmoles imidazole HCl (pH 7.9) replaced phosphate. Controls were run in the absence of normetanephrine or enzyme. Incubation was carried out for 1 hr at 37°. The reaction was stopped by addition of 0.5 ml of 0.5 M borate buffer (pH 10) and 5 ml of toluene-isoamyl alcohol (3:2, v/v). The tubes were vortexed for 30 sec, and 4 ml aliquots of the organic layer were removed and dried prior to counting in a Packard model 3375 liquid scintillation spectrometer. The scintillation fluid consisted of 8 g PPO, 0.2 g POPC, 1 liter toluene (scintanalyzed) and 1 liter Cellosolve (purified). PNMT was exposed to PbCl_2 for periods of 0-120 min at 23° prior to addition of reaction mixture. Likewise, in experiments using EDTA,

DL-penicillamine or 1,3-dithiothreitol, these chelators were added prior to assay. The activity of the enzyme not exposed to PbCl_2 was unaffected over these time periods. The data represent the mean of duplicate samples that differ less than 8%.

Dialysis experiments. Plexiglass microcells of the type frequently utilized for equilibrium dialysis were used. Each half-cell contained four chambers of 100 μl volume. The chambers were coated with epoxy adhesive-sealant (Easy Epoxy Repair Kit, K-256, CONAP, Inc., Olean, NY) and allowed to dry for 24 hr prior to use. The two half-cells were separated by dialysis tubing and clamped tightly together to prevent leakage.

Enzyme (46 μg protein) was exposed to 0.3 mM PbCl_2 or H_2O for 1 hr at 23°. The final volume was 400 μl . Next, 90 μl of the enzyme or enzyme- PbCl_2 solution was placed in one side of the microcells. The other side contained 90 μl of 0.033 M imidazole HCl/0.15 M KCl (pH 7.9) or 90 μl of the imidazole/KCl buffer containing 0.02 M DL-penicillamine. Dialysis was performed at 23° with mechanical shaking for the duration of the experiment. The buffer or buffer-DL-penicillamine was replaced at 1, 3, 5.5 and 22 hr. After 24 hr, 40 μl aliquots of enzyme solutions were removed and assayed for PNMT activity as described above. In all cases, duplicate samples were assayed. Aliquots of the undialyzed, starting preparations also were assayed for PNMT activity.

RESULTS

Inhibition of PNMT activity by PbCl_2 increased as a function of exposure time. When 5.8 μg protein was treated with 3 nmoles PbCl_2 , inhibition developed slowly and reached a maximum of 25% after 45 min (data not shown). In all cases, enzyme samples incubated under identical conditions but without PbCl_2 showed no loss of enzyme activity. At

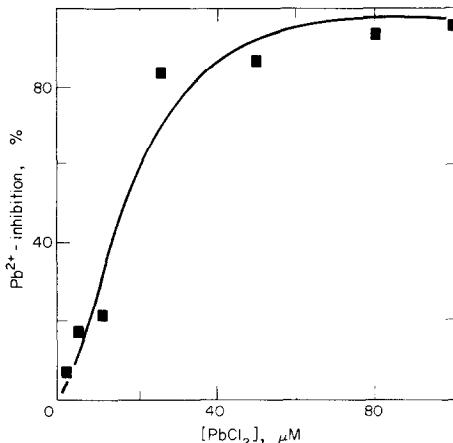


Fig. 1. PbCl_2 inhibition of PNMT activity at different PbCl_2 concentrations. Protein content was 5.8 μg . A 1-hr exposure to PbCl_2 at 23° preceded PNMT assay. The abscissa shows total PbCl_2 concentration. Values are percent inhibition relative to a control sample exposed under the same conditions but with H_2O instead of PbCl_2 . The activity of the control was 0.26 nmole metanephrine produced/hr.

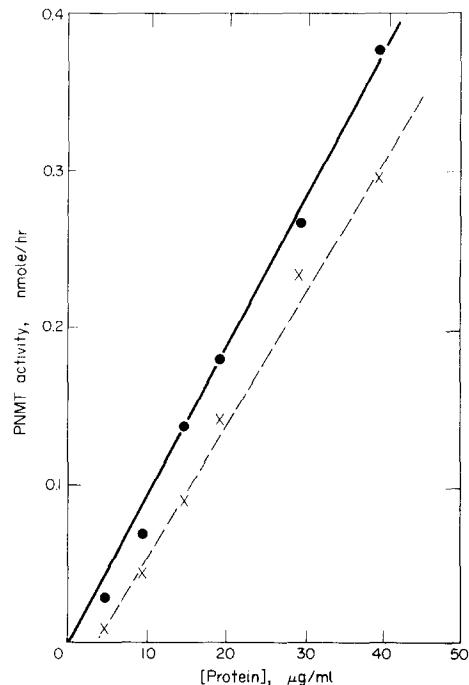


Fig. 2. PNMT activity as a function of protein concentration. PNMT was exposed to H_2O (●—●) or 3 nmoles PbCl_2 (×—×) at 23° for 1 hr prior to enzyme assay. PNMT activity is expressed as nmoles metanephrine produced/hr.

the same protein concentration, addition of 4.5 nmoles (15 μM final concentration) PbCl_2 resulted in 50% inhibition of PNMT activity. Activity was completely inhibited in the presence of 18 nmoles (60 μM) PbCl_2 (Fig. 1).

Alternatively, when the concentration of PbCl_2 was held constant at 3 nmoles (10 μM) and the amount of protein was varied, 100% inhibition occurred at a protein concentration of 3.5 $\mu\text{g}/\text{ml}$ (Fig. 2). The PbCl_2 :protein ratio needed for 100% inhibition of PNMT activity as determined from this experiment was 2.9 nmoles $\text{PbCl}_2/\mu\text{g}$ protein. This value was in close agreement with the value of 3.1 nmoles $\text{PbCl}_2/\mu\text{g}$ protein as determined from Fig. 1.

Chelators were unable to reverse the PbCl_2 -induced inhibition of PNMT activity when added after exposure of the enzyme to PbCl_2 (Table 1, column A). PbCl_2 :protein ratios of 2.6 and 5.2 nmoles $\text{PbCl}_2/\mu\text{g}$ protein were chosen to give 84 and 100% inhibition respectively. The chelators were added in 10- to 200-fold mole excess over PbCl_2 for 1 hr prior to PNMT assay. In no instance was any significant reversal of PbCl_2 inhibition noted. When PbCl_2 and either DL-penicillamine or 1,3-dithiothreitol in 200-fold mole excess over PbCl_2 were incubated for 1 hr prior to addition of enzyme, these chelators were unable to prevent PbCl_2 inhibition of PNMT activity (Table 1, column B). EDTA in 67- or 100-fold mole excess over PbCl_2 was able to partially prevent inhibition of the enzyme. However, control samples of the enzyme not exposed to PbCl_2 showed up to a 50% loss of activity in the presence

Table 1. Inability of chelators to restore or prevent loss of PNMT activity

PbCl ₂ (μ moles)	Chelator (μ moles)	% Inhibition	
		A*	B†
	EDTA‡		
0.030	0.3	92	
0.015	0.3	95	
0.015	1.0	92	60
0.015	1.0	87	43
	DL-Penicillamine§		
0.030	0.3	100	
0.015	0.3	100	
0.015	3.0	89	81
	1,3-Dithiothreitol§		
0.015	3.0	93	93
0.030	None	95	95
0.015	None	84	84

* PNMT (5.8 μ g protein) was exposed to PbCl₂ for 1 hr at 23°. Chelator was added and another 1-hr incubation preceded enzyme assay. In both A and B, values are percent inhibition relative to control samples treated with chelator but not PbCl₂. Values for percent inhibition in the absence of chelators are included for comparison.

† PbCl₂ and chelator were preincubated at 23° for 1 hr prior to addition of PNMT (5.8 μ g protein). Another 1-hr incubation preceded PNMT assay.

‡ The total activity of lead-free PNMT samples treated with 0.3, 1.0 or 1.5 μ moles EDTA decreased 20, 45 and 48%, respectively, when compared to identical samples but without EDTA.

§ The activity of lead-free PNMT samples remained virtually the same (0.015 nmole metanephrine produced/hr) whether or not DL-penicillamine or 1,3-dithiothreitol was present.

of EDTA. The PNMT activity in control samples was not inhibited by the addition of DL-penicillamine or 1,3-dithiothreitol.

Dialysis experiments were performed in an attempt to restore enzyme activity by removal of PbCl₂. Because of the small amount of enzyme, microcells were used. Preliminary experiments using ²¹⁰Pb(NO₃)₂ indicated that a large percentage of Pb²⁺ adhered to the walls of the plexiglass chambers.

Table 2. Inability to restore PNMT activity by dialysis*

Dialysate	% Activity†
Imidazole	2
Imidazole + DL-penicillamine	8

* PNMT was exposed to PbCl₂ (2.6 nmoles PbCl₂/ μ g protein) for 1 hr prior to 24 hr of dialysis at 23°. The procedure is described in Materials and Methods. Values are percent activity relative to enzyme samples dialyzed in similar fashion but without exposure to PbCl₂. The activities of the controls were 0.26 nmole metanephrine produced/hr. The activity of the enzyme was not changed significantly during the course of this experiment.

† Activity of the lead-treated enzyme from the original incubation was 5% that of the lead-free control when not dialyzed.

Thus, the chambers were coated with an epoxy sealant. The activity of PNMT was not affected by this sealant. Dialysis of an enzyme-²¹⁰Pb(NO₃)₂ solution (5.2 nmoles Pb/ μ g protein) for 5 hr against either imidazole or imidazole-penicillamine resulted in removal of 80% of the ²¹⁰Pb. After 18 hr, 95% of the ²¹⁰Pb had been removed.

The activity of PNMT exposed to PbCl₂ (2.6 nmoles PbCl₂/ μ g protein) for 1 hr prior to dialysis was not restored when dialyzed against either imidazole or imidazole-penicillamine for 24 hr (Table 2). The activities of control samples not exposed to PbCl₂ were not altered significantly during the dialysis period.

DISCUSSION

The inhibition of PNMT activity by PbCl₂ appeared to be irreversible. The observation that PbCl₂-induced inhibition of the enzyme developed slowly suggests that the total amount of active enzyme was slowly decreasing. Additional support for this hypothesis comes from a plot of PNMT activity in the presence and absence of PbCl₂ (Fig. 2). The line obtained in the presence of PbCl₂ has the same slope as the uninhibited enzyme but crosses the abscissa to the right of the origin suggesting irreversible inhibition [20]. Chelators such as EDTA, DL-penicillamine and 1,3-dithiothreitol in large molar excess over PbCl₂ were unable to restore enzyme activity when added after exposure of the enzyme to PbCl₂. Furthermore, DL-penicillamine and 1,3-dithiothreitol were unable to prevent PbCl₂ inhibition of the enzyme, and EDTA only partially prevented inhibition. Care must be taken when interpreting the EDTA results because EDTA reduced the total activity of control samples not exposed to PbCl₂. Finally, the activity of PNMT inhibited by PbCl₂ was not restored by dialysis against buffer or buffer plus chelator. These data demonstrate that the PbCl₂-induced inhibition of PNMT activity was irreversible.

Kitabchi and Williams [11] reported that Hg²⁺ reversibly inhibits PNMT and suggested that the enzyme has a sulfhydryl group at its active site which is necessary for enzymatic activity. The binding of Pb²⁺ to this sulfhydryl may account for the inhibition. Equilibrium binding data would be needed to determine the number of Pb²⁺ binding sites as well as the association constant(s). These studies must wait until a highly purified enzyme preparation can be obtained so that non-specific lead binding can be eliminated.

The finding that Pb²⁺ plus DL-penicillamine or 1,3-dithiothreitol still inhibited the enzyme (Table 1, column B) raises the possibility that the chelators can actually enhance Pb²⁺ inhibition or that the Pb²⁺-inhibitor complex is also inhibitory. The first point has been ruled out. In experiments in which PNMT activity was inhibited 50% by PbCl₂ alone, no increase in inhibition was seen if PbCl₂ plus chelator was used instead (data not shown). The latter possibility still may exist. Measurement of Pb²⁺ association constants in the presence and absence of chelators will be useful in answering this question.

It is difficult to draw conclusions regarding effects of Pb²⁺ on PNMT activity *in vivo* based on these *in*

vitro studies. PbCl_2 , however, did irreversibly inhibit PNMT activity *in vitro* in the nmoles $\text{PbCl}_2/\mu\text{g}$ protein range. If sufficient concentrations of Pb^{2+} could reach the cellular location of PNMT in the adrenal medulla and brain, then presumably irreversible inhibition could result. This could contribute to alterations in the concentrations of norepinephrine and epinephrine in these tissues. Also, in the present study exposure to PbCl_2 was of short duration, whereas *in vivo* chronic exposure frequently occurs. What effect this would have on the enzyme or on the amount of Pb^{2+} needed for inhibition is unknown. Studies are underway to assess the *in vivo* effects of lead.

Acknowledgements—Acknowledgement is made to the Donors to the Petroleum Research Fund, administered by The American Chemical Society, for support of this research. The author is grateful to Ray K. Brown at Wayne State University, Department of Biochemistry, School of Medicine, for his helpful comments and the use of his facilities for many of the experiments.

REFERENCES

1. M. A. Wessel and A. Dominski, *Am. Scient.* **65**, 294 (1977).
2. O. David, J. Clark and K. Voeller, *Lancet* **2**, 900 (1972).
3. P. B. Hammond, in *Essays in Toxicology* (Ed. F. R. Blood), p. 115. Academic Press, New York (1969).
4. P. J. Landrigan, R. W. Baloh, W. F. Barthol, R. H. Whitworth, N. W. Staehling and B. F. Rosenbloom, *Lancet* **1**, 708 (1975).
5. A. T. Modak, S. T. Weintraub and W. B. Stavinoha, *Toxic. appl. Pharmac.* **34**, 340 (1975).
6. T. C. Dubas, A. Stevenson, R. L. Singhal and P. D. Hrdina, *Toxicology* **9**, 185 (1978).
7. M. Golter and I. A. Michaelson, *Science* **187**, 359 (1975).
8. N. K. Satija, T. D. Seth and D. S. Tandon, *Toxicology* **10**, 13 (1978).
9. J. Axelrod, *J. biol. Chem.* **237**, 1657 (1962).
10. R. J. Wurtman, J. Axelrod, E. S. Vesell and G. T. Ross, *Endocrinology* **82**, 584 (1968).
11. A. E. Kitabchi and R. H. Williams, *Biochim. biophys. Acta* **178**, 181 (1969).
12. N. Kirshner and M. Goodall, *Biochim. biophys. Acta* **24**, 658 (1957).
13. J. K. Saelens, M. S. Schoen and G. B. Kovacsies, *Biochem. Pharmac.* **16**, 1043 (1967).
14. R. G. Pendleton, G. Gessner and J. Sawyer, *Res. Commun. Chem. Path. Pharmac.* **21**, 315 (1978).
15. L. A. Pohorecky, M. Zigmond, H. Karten and R. J. Wurtman, *J. Pharmac. exp. Ther.* **165**, 190 (1969).
16. R. D. Ciaranello, R. E. Barchas, G. S. Byers, D. W. Stemmler and J. D. Barchas, *Nature, Lond.* **221**, 368 (1969).
17. J. M. Saavedra, M. Palkovits, M. J. Brownstein and J. Axelrod, *Nature, Lond.* **248**, 695 (1974).
18. S. K. Shapiro and D. J. Ehninger, *Analyt. Biochem.* **15**, 323 (1966).
19. T. Deguchi and J. Barchas, *J. biol. Chem.* **246**, 3175 (1971).
20. I. M. Segel, *Enzyme Kinetics*, p. 127. John Wiley, New York (1975).